Almost maximally almost-periodic group topologies determined by T-sequences
نویسندگان
چکیده
منابع مشابه
2 7 N ov 2 00 5 Almost maximally almost - periodic group topologies determined by T - sequences ∗
A sequence {an} in a group G is a T -sequence if there is a Hausdorff group topology τ on G such that an τ −→ 0. In this paper, we provide several sufficient conditions for a sequence in an abelian group to be a T -sequence, and investigate special sequences in the Prüfer groups Z(p∞). We show that for p 6= 2, there is a Hausdorff group topology τ on Z(p∞) that is determined by a T -sequence, w...
متن کاملCharacterization of almost maximally almost-periodic groups
Let G be an abelian group. We prove that a group G admits a Hausdorff group topology τ such that the von Neumann radical n(G, τ) of (G, τ) is non-trivial and finite iff G has a non-trivial finite subgroup. If G is a topological group, then n(n(G)) 6= n(G) if and only if n(G) is not dually embedded. In particular, n(n(Z, τ)) = n(Z, τ) for any Hausdorff group topology τ on Z. We shall write our a...
متن کامل2 00 8 Which infinite abelian torsion groups admit an almost maximally almost - periodic group topology ? *
A topological group G is said to be almost maximally almost-periodic if its von Neumann radical n(G) is non-trivial, but finite. In this paper, we prove that (a) every countably infinite abelian torsion group, (b) every abelian torsion group of cardinality greater than continuum, and (c) every (non-trivial) divisible abelian torsion group admits a (Hausdorff) almost maximally almost-periodic gr...
متن کاملWhich Infinite Abelian Groups Admit an Almost Maximally Almost-periodic Group Topology?
A topological group G is said to be almost maximally almost-periodic if its von Neumann radical n(G) is non-trivial, but finite. In this paper, we prove that every abelian group with an infinite torsion subgroup admits a (Hausdorff) almost maximally almost-periodic group topology. Some open problems are also formulated.
متن کاملRotation Sets and Almost Periodic Sequences
We study the rotational behaviour on minimal sets of torus homeomorphisms and show that the associated rotation sets can be any type of line segments as well as non-convex and even plane-separating continua. This shows that restrictions which hold for rotation set on the whole torus are not valid on minimal sets. The proof uses a construction of rotational horseshoes by Kwapisz to transfer the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2006
ISSN: 0166-8641
DOI: 10.1016/j.topol.2005.12.010